
django-nomadblog Documentation
Release 0.5

Hector Garcia

May 02, 2017

Contents

1 Features 3

2 Installation 5

3 Configuration 7
3.1 Settings . 8

4 Overriding templates 9

5 Passing parameters to views 11

6 Custom view wrappers 13

7 Reverse urls 15

i

ii

django-nomadblog Documentation, Release 0.5

This is a basic Django application implementing the simplest form of a blogging system. It is capable of managing
multible blogs and users. It has been written with an eye put on keeping modularity and flexibility as much as possible,
so you won’t find lots of goodies in the code (tagging, related posts, blogroll), but just a couple of features to help you
start hacking it to your needs.

Contents:

Contents 1

django-nomadblog Documentation, Release 0.5

2 Contents

CHAPTER 1

Features

• Multiblog: A simple project setting and a URL pattern is all we need to configure our Nomadblog installation
for single or multiple blog management.

• Multiuser: The application allows one or many authors writing content to the same blog.

• Simplicity and flexibility: A post can have a category and an status assigned. That’s it. Everything else is up to
you and you will have to code it yourself, which means you control what is in your project, how it works, etc.

• Context update functions: Default Nomadblog views are only a thin wrapper that call their respective _ctxt
related functions (which have the business logic) and return the response. The use of this mechanism is better
explained in the section Custom view wrappers.

• Complete example projects: As usual with my open sourced Django projects, I include two example
project folders, one for a single blog installation (single_blog_example) and another one for multiblog
(multiple_blogs_example), where you can see all the things explained here in practice.

3

django-nomadblog Documentation, Release 0.5

4 Chapter 1. Features

CHAPTER 2

Installation

The package is listed in the Python Package Index. You can use your favorite package manager like easy_install
or pip:

pip install django-nomadblog

Or, you can clone the latest development code from its repository:

git clone git@github.com:nabucosound/django-nomadblog.git

5

http://pypi.python.org/pypi/django-nomadblog/

django-nomadblog Documentation, Release 0.5

6 Chapter 2. Installation

CHAPTER 3

Configuration

Add nomadblog to the INSTALLED_APPS setting of your settings.py:

INSTALLED_APPS = (
...
'nomadblog',

)

If you use South you can run the included migrations:

./manage.py migrate nomadblog

If you don’t, use your own migration tool or simply syncdb:

./manage.py syncdb

Include this two lines of code in your root urls.py:

Put it somewhere in the beginning of the file
from django.conf import settings
MULTIBLOG = getattr(settings, 'NOMADBLOG_MULTIPLE_BLOGS', False)

Add this pattern into your url conf
urlpatterns = patterns('',

...
url(r'^blog/', include('nomadblog.urls')) if not MULTIBLOG \

else (r'^blogs/(?P<blog_slug>[-\w]+)/', include('nomadblog.urls')),
)

You can change the blog/ or blogs/ initial part but do not modify (?P<blog_slug>\w+), because it is used
by the app to differenciate which blog is being accessed, in case multiblog is used.

7

http://south.aeracode.org/

django-nomadblog Documentation, Release 0.5

Settings

Multiblog

Define the variable NOMADBLOG_MULTIPLE_BLOGS in your project settings as True if you want a multiple blog
configuration:

NOMADBLOG_MULTIPLE_BLOGS = True

Default Post model

By default, django-nomadblog uses the Post model, but you can extend it with your own one, that will be then
used by the app views:

POST_MODEL = 'yourapp.models.YourExtendedPostModel'

8 Chapter 3. Configuration

CHAPTER 4

Overriding templates

django-nomadblog uses different templates to list posts, show a post details, list categories or list posts by cate-
gory. You will want to override these templates, to add your layout, design and own stuff. Create a new nomadblog
template folder where your project can find it and copy the templates found on the templates/nomadblog
directory (like list_posts.html or show_post.html) or, if you want to be quicker, just copy the entire
templates/nomadblog folder.

9

django-nomadblog Documentation, Release 0.5

10 Chapter 4. Overriding templates

CHAPTER 5

Passing parameters to views

Views receive a number of parameters that are used to specify, change or override different parts of the app. If you
take a look at the Nomadblog default views you will see how flexible Nomadblog is intended to be.

In order to pass parameters to Nomadblog views, you must first of all create a copy of the urls.py file in the
Nomadblog app:

cp /path/to/django-nomadblog/urls.py /path/to/project/yourapp/blog_urls.py

Then point to it changing your project root URL pattern:

urlpatterns = patterns('',
...

(r'^blog/', include('yourapp.blog_urls')) if not \
NOMADBLOG_MULTIPLE_BLOGS else (r'^blogs/(?P<blog_slug>\w+)/', \
include('yourapp.blog_urls')),

)

You can now modify your urlconf, like passing parameters to view functions with the kwargs. See the website/
blog_urls.py file in the example projects to check out a few examples.

11

django-nomadblog Documentation, Release 0.5

12 Chapter 5. Passing parameters to views

CHAPTER 6

Custom view wrappers

If you want to extend functionality beyond the basic logic behind a Nomadblog view, you can call, from your
wrapper view function, one of the _ctxt functions defined in views.py directly with your context. Passing a
RequestContext to the function will update it with the expected values needed for rendering the response. If you
do not pass any RequestContext object, a new one is created and returned.

Basically the idea behind having the business logic separated from template context population is that you can have
the basic functionality of the action performed in the blog (get a list of posts, show the contents of a post) isolated and
DRY, and add or modify business logic to your wrapper view.

I wrote a post trying to explain better this approach. Also, the four Nomadblog actions represented by their four view
functions — list posts, show post, list categories, show post by category— in the views.
py code are actually the best examples to implement your own wrapper.

13

http://nomadblue.com/blog/django/context-in-django-views-dry-reusable-apps/

django-nomadblog Documentation, Release 0.5

14 Chapter 6. Custom view wrappers

CHAPTER 7

Reverse urls

Reverse URLs in templates will vary depending on your multiblog configuration. Nomadblog views add a
multiblog flag in the context to use the right url template tag parameters. Take, for instance, this sampe code
from show_post.html:

{% if multiblog %}
<a href="{% url list_posts_by_category
bloguser.blog.slug post.category.name %}" class="link-categories">
{{ post.category.name }}
{% else %}
<a href="{% url list_posts_by_category post.category.name %}"
class="link-categories">{{ post.category.name }}
{% endif %}

You probably won’t need this if you are using your own templates, because you will set up your templates in advance.

15

	Features
	Installation
	Configuration
	Settings

	Overriding templates
	Passing parameters to views
	Custom view wrappers
	Reverse urls

